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ABSTRACT 

Software has a huge and negative impact on the economy. Formal verification is 

an effective method to check whether a piece of software contains certain kinds of errors. 

Defense Advanced Research Projects Agency (DARPA) started the Crowd Sourced 

Formal Verification (CSFV) program to propose a new model for formal verification by 

using five online games. CSFV aims to explore whether an online game player with no 

formal verification expertise can achieve formal verification more efficiently than 

through conventional processes. We observe that, currently, no quality criteria exist to 

measure CSFV gamers’ efforts. The study suggests that machine detectability of a 

solution detected by a gamer indicates poor quality for that solution. The solutions in one 

of the games, StormBound, were selected for examination. An automated tool was 

developed to check the machine detectability of the solutions, and 78 percent of the 

assertions were seen to be machine detectable.  
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I. INTRODUCTION 

Software bugs continue to affect critical systems. Detecting them requires some 

mathematical models for understanding the behavior of a given software system. At 

present, the process of creating these mathematical models is time consuming and 

requires a high degree of mathematical and computer science training [1]. Worldwide, 

there are insufficient people with this training to verify every software system that would 

benefit from this approach [1]. The cost-effective formal verification will possibly 

increase the number of formally proved software [2]. 

The Defense Advanced Research Projects Agency (DARPA) published the 

Crowdsourced Formal Verification (CSFV) project in order to find a more affordable 

way of handling these challenges [3]. The goal of CSFV is to explore whether someone 

with no formal verification expertise can achieve formal verification more efficiently 

than through traditional methods [3]. With the DARPA CSFV program, a group of 

scientists developed a system to turn formal verification into five online games: 

Circuitbot, StormBound, Ghostmap, FlowJam, and one iOS game, Xylem—the code of 

plants. The games are published online at the Verigames.com website and were played by 

many gamers from various backgrounds.  

The CSFV project aims to test the primary hypothesis of whether a non-expert 

Internet gamer can help verify a piece of software, which used to be the job of experts of 

computer programs. Computer programs are still unable to produce satisfactory results. 

Therefore, experts are still the best option for software verification. Even after the first 

phase of the CSFV project ended in September 2014, it is still unclear whether the 

contribution of CSFV gamers to software verification is satisfactory. The relative position 

of CSFV gamers to expert verifiers and computer verifiers is also unclear. 

Two games were designed as loop invariant detecting (LID) games: StormBound 

and Xylem. They aim to present problems with the possible variable values from a 

particular loop. Gamers are expected to detect possible invariants (generalizable relations 

among the variables) among these values. Their answers (assertions) are written to the 
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related loop as a comment that a software tester can use to see vulnerability. Similar to 

other formal verification methods, LID is the job of experts and computer programs 

(automated LIDs). 

LID games represent one part of the CSFV project and await evaluation criteria 

just like other CSFV games. This thesis proposes quality criteria for LID games. An LID 

game needs to meet that criteria in order to have sufficient quality to make formal 

verification. This study proposes that the criteria be machine detectable. Machine 

detectable loop invariants refer to those that can be detected by an automated LID. 

A. RESEARCH PROBLEM 

LID games turn the invariant detection process into a problem-solving game. We 

observe that currently no criteria exist to measure the quality of gamers’ efforts.  

The primary purpose of this thesis is to propose criteria to measure the quality of 

LID gamers’ effort. Those criteria will analyze the invariants detected by gamers of 

StormBound, one of the LID games of CSFV. 

B. RESEARCH QUESTIONS AND HYPOTHESIS 

This thesis tries to answer one primary question: How can we measure the quality 

of LID (StormBound) gamers’ efforts? 

One secondary question also needs to be addressed: What percentage of the 

invariant detected by LID (StormBound) gamers overlaps with the checklist of Daikon, 

an automated LID? 

C. METHODOLOGY 

This research focuses to determine whether StormBound gamers have detected 

some invariants that cannot be easily produced by Daikon. The thesis uses both 

qualitative and quantitative approaches. Auxiliary sources are studied primarily using a 

variety of materials. The StormBound developing team at Galois Company collected the 

data. This data consists of StormBound gamers’ invariants, which were written in Haskell 

Language. 
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By examining this data and the manual of Daikon (an automated LID), we 

recognized that some of the gamers’ invariants are included by a Daikon checklist (see 

Appendix.B). Daikon’s variants are known to have poor quality. We suggest that 

StormBound loop invariants overlapping with the checklist of Daikon are poor quality. 

The data we received on May 18, 2015, contains 48,244 assertions produced by 

StormBound gamers. Because it is hard to analyze that much data, we developed a tool 

that checks each of these assertions for detectability by Daikon. The checker is an Excel 

Visual Basic for Applications (VBA) script that checks the overlapping invariants in a 

given list by comparing them under the assumption defined by the user.  

D. POTENTIAL BENEFITS 

Firstly, game developers can use the criteria to quantify the quality of gamers’ 

efforts. 

Secondly, project managers can use the criteria as a parameter to determine the 

return of investment of the CSFV project. 

E. SCOPE AND LIMITATIONS 

In this thesis, we used the raw data received from one VeriGames’ developer 

related to the StormBound game. However, we do not have raw data to examine the other 

game Xylem, which has the similar mechanism.  

Secondly, we used abstraction to simplify the highly complex data, such as 

translating a first-level operation (addition, subtraction, etc.) for two variables into 

another variable. That approach is likely to decrease the accuracy of the finding.  

Thirdly, we used only Daikon as an automated LID. However, there are many 

other tools for similar purposes. This study covers only the Daikon checklist. 

F. THESIS ORGANIZATION 

In Chapter I, we introduced the CSFV project by elaborating its main intent of 

creating a new model for checking the software bugs with crowdsourcing. We also 

explained the problem and purpose of this thesis.  
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In Chapter II, we discuss the concepts used in this thesis. We explain software 

security and its importance in today’s highly technological world. Then we explain the 

two major techniques used for software security: testing and formal verification. We also 

explain loop invariant analysis, automated LID, crowdsourcing, the CSFV project, 

StormBound and Xylem, and the Haskell Language. 

In Chapter III, we explain how we got the data. Then we introduce the method we 

used to read it. The data is too complex for a non-expert to understand, so we introduce 

the abstraction method that we used to make the data more understandable. 

In Chapter IV, we introduce why we need such criteria. We introduce the 

mechanism of automated LIDs. Finally, we introduce our checker tool developed for 

detecting whether a given loop invariant is detectable by Daikon. 

In Chapter V, we reveal our findings. We also explain the limitations of the study 

and what can be done in further studies. 
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II. BACKGROUND 

This chapter covers the basic concepts that will help readers understand the thesis. 

Section A details software security and software vulnerabilities because the CSFV project 

aims to find a more affordable way to secure software free of certain types of 

vulnerability. Section B elaborates on the two major methods of finding security 

vulnerabilities: testing and formal verification. Formal verification is the most effective 

way to ensure that software is free of certain types of vulnerability. Formal verification 

can be performed with many methods, including loop invariant analysis. Section C 

elaborates conventional loop invariant detection processes. The project aims to attract 

online gamers who can detect loop invariants in a piece of software. Some computer 

programs can also be used for the same purpose. Section D introduces Daikon as a 

computer-based loop invariant analysis tool. It is a machine learning tool that detects 

invariants in a given piece of code. Section E mentions the CSFV project while 

explaining why DARPA performs its research and how the CSFV system works. The 

CSFV project mainly depends on online games developed by various companies for that 

special project. This study examines StormBound which is one of the five CSFV games. 

Section F details that game.  

A. SOFTWARE SECURITY AND BUGS 

A bug or vulnerability in the OpenSSL software is defined as a problem in any 

software. In April 2014, the release of Heartbleed vulnerability created a big concern for 

the security of the Internet. One of the most significant Internet weaknesses, Heartbleed   

enables hackers to distantly read memory information from various popular HTTPS sites 

including many commercial one such as Amazon, EBay [4]. The release of similar 

vulnerabilities negatively affects general attitude towards Internet. People are less likely 

to trust the Internet if they are worried that they will lose their personal information and 

their money. 

With the increased Internet usage, regular Internet users’ concern for Internet 

security has increased [5]. Critical Internet services are supposed to be free from security 
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vulnerabilities. Besides Internet services, other critical systems such as Avionics can be 

disastrously affected by similar weaknesses. Software security vulnerability in the 

electronic systems of an aircraft can cause many people to lose life [6]. A range of 

consequences of software errors have been reported as shocking news, reducing people’s 

trust in software. Some of these incidents are related to English pensioners incorrectly 

identified dead, an innocent man who was almost imprisoned [7].  

Information technologies are in every part of our daily lives. We are surrounded 

by many software systems: computers, smartphones, and tablets. All these vital 

technologies have two main components: software and hardware. Besides their benefits, 

they may also be harmful. On the one hand, we use smartphones to share pictures with 

our family; on the other hand, hackers may access our accounts and steal our credit card 

numbers. All software users, from smartphone users to an airplane pilots, are aware that 

software security is vital for the safe and reliable performance of any given device. With 

the increase in commercial and financial opportunities online, security concerns also 

increase. Cyberspace does not have boundaries. As human beings, we can choose our 

friends. Online, hackers are no further than our closest friends. Under these pessimistic 

conditions, many people choose not to become involved in or over-reliant on technology. 

Fortunately, experts are working to make these devices free from security concerns. 

Today’s software is intricate and available to almost any user. It is developed in 

diverse languages and performs on diverse execution environments, such as browsers, 

language processors, and databases [8]. Software has millions of lines of code, as well as 

different functions and components from very different platforms. Just as any other 

human-produced technology, it may include some failure points inside that complex 

structure. Some part of that huge software is likely to fail. Failure can cause a temporary 

cessation of services stop or result in credit card theft. Although a temporary cessation of 

services seems trivial, its timing defines how critical it may be. In the case of an 

emergency situation, a temporary cessation of services may result in loss of life. 

Some researchers are looking for the possible failures in software by using either 

formal methods or testing. A variety of tools and methods are used to develop and test the 

software before actual utilization to guarantee that specific requirements are met [8]. In a 
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different study, systematic test of the effectiveness of programs running on various 

versions of the UNIX operating system was conducted [9].  

Even if there are many testing tools and methods, they are still inadequate to 

prevent discovery of new vulnerabilities [10]. Hackers can use vulnerabilities to steal 

data from a critical system. In order to explain vulnerability, we present one example. 

One of the most commonly known vulnerabilities is buffer overflow (BOF) vulnerability. 

BOF vulnerability is a weakness that enables a code to exceed the allocated size for data 

to overwrite to a different location in memory. According to [11], “The 

overwriting corrupts sensitive neighboring variables of the buffer 

such as the return address of a function or the stack frame pointer.” 

Figure 1.  A Simple Code for String Operations 

 

The C code in Figure 1 is a simple example for BOFs. The code assigns two 

variables with the size of three and four. The strcpy function copies seven characters into 

the address place of “SecondBuffer” variable. The “SecondBuffer” variable is allocated 

enough space to hold four characters in the memory and three characters and a NULL 

value (see Figure 2). When the strcpy function runs, the first three characters of the 

“5555555” are written on the “SecondBuffer,” and first two of the rest are written on the 

“FirstBuffer.”  
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Figure 2.  Memory before Strcpy Function 

 

Figure 3 shows the memory after the  strcpy function execution. “FirstBuffer” 

value was changed undesirably to “55” from “22.” This is a simple example for BOF 

vulnerability. Some part of the code made an undesired change on the memory. If the 

“FirstBuffer” variable has a critical function on the overall application, then after the 

execution of strcpy this function may crash. Considering the possibility of that function 

being a critical banking service, that crash may create high level financial consequences.  

Figure 3.  Memory after Strcpy Function 

 

There are many other vulnerabilities similar to BOF, such as SQL injection, 

command injection, cross-site scripting, and missing encryption. Every day, we encounter 

news a financial damage caused by a new software security vulnerability [12]. There are 

some online repositories used to publish software vulnerabilities and their solutions, such 

as the National Vulnerability Database (NVD) [13], Common Vulnerabilities and 

Exposures (CVE) database [10]). 

B. TESTING AND FORMAL VERIFICATION 

A vulnerability or bug occurs when the software does something that it is not 

supposed to do. In order to detect such errors and develop software free of certain types 

of vulnerability for critical functions, it is important to understand the characteristics of 

software testing. The primary purpose of any software testing method is to monitor the 
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reactions of software in the production environment and to detect the unexpected 

reactions. We test a system or its components in order to be sure that it satisfies the 

defined requirements. In other words, we want to guarantee that the reactions of a system 

are desirable. 

According to [14], “Although there has been a significant increase in security 

awareness among software developers during the past few years, 

there are still many developers who do not have the necessary 

expertise in developing secure programs.” The shortage in expertise on the developers 

made the security expert to develop automated testing tools such as Fuzz testing tools. 

Professor Barton Miller and his students from University of Wisconsin Madison have 

invented the first fuzz testing tool in 1989 [15]. Fuzzing is a computerized testing which 

is conducted to trigger a crash in the application in order to disclose the mistakes inside 

of it [16]. Fuzzing is a very popular way of testing. 

Verifying software guarantees that a specific portion of software is not affected by 

particular mistakes [2]. Since mainly expert engineers are needed to perform software 

verification, verifying large software systems requires big budgets [2]. Formal 

verification is becoming a more critical element with the increase of complex 

applications. While hardware complexity increases parallel to Moore’s Law, verification 

complexity is growing even more with a speed twice that of hardware complexity [17]. 

Since verification phase takes almost 70% of the development time, verification 

complexity is considered the main bottleneck for design [17].  

Formal verification includes mathematical reasoning to confirm that a design 

specification is met during the execution of the system [17]. Formal verification is used 

to detect the vulnerabilities, such as the BOF inside the code. Loop invariant analysis is a 

method used for formal verification. 

C. LOOP INVARIANT ANALYSIS 

In computer science, a loop is a control statement programming language for 

identifying iteration, which allows code to be executed repetitively. Due to the fluctuating 

organization of loops, loops are more likely to have a bug than the other parts of the code. 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Control_statement
https://en.wikipedia.org/wiki/Statement_(programming)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Execution_(computers)


 10 

It is hard to reason the behavior of a loop because of the ambiguity in the number of 

iterations. Furthermore, the iteration number may be subject to the input data, which 

makes determining all possible combinations too hard. According to [18], “One solution 

to this problem is to reason about loops independently of the number of iterations: loop 

invariants are logical statements that describe properties of a loop holding for all possible 

executions of the loop.” Loop invariants are the values indicating the relationship 

between a single variable and a value or relationship between many data members [19]. 

According to [20] “An invariant is a property that holds at a certain point or 

points in a program; these are often used in assert statements, documentation, and formal 

specifications. Examples include being constant (x = a), non-zero (x 6= 0), being in a 

range (a ≤ x ≤ b), linear relationships (y = ax + b), ordering (x ≤ y), functions from a 

library (x = fn(y)), containment (x ∈ y), sortedness (x is sorted), and many more.” A loop 

invariant is a scheme composed of variables from the program that are true prior to the 

loop, through iterations of the loop, and after the loop [21]. For example, in Figure 4, one 

can show that the statements ( t >=0 ) and ( i = div * j + t ) are invariants for the  

loop [21].  

Figure 4.  A Simple Loop Program 

 

Testers benefit from invariants in order to better understand an application [20]. 

Loop invariants describe the behavior of a loop. The behavior should be the same in all 

possible iterations of the loop and can be used to understand the existence of a bug inside 

the loop. The number 2,147,483,647 is the maximum positive value for a 32-bit signed 



 11 

binary integer in computing. Considering a variable “x” as integer in a loop and a loop 

invariant that shows that x can get a value greater than the maximum positive value for 

a 32-bit signed binary integer, we see a problem. When the x gets a greater value than it 

can store in the allocated space in memory, it writes the part that does not fit into its 

allocated space into some other location that may be used by another variable. The 

unintentionally changed variable may stop the code. 

Loop invariants are similarly useful for testing. Testers can use them to generate 

better test cases [22]. They can change the program verification process dramatically and 

drastically speed up processes like automatic test case generation [18]. Having 

recognized the loop invariants in the initial phases of software development, 

programmers can detect the properties that produce the correct requirements [23]. 

D. AUTOMATED INVARIANT DISCOVERY SYSTEMS (DAIKON) 

In the previous example, the loop invariants may seem easy to detect. When it 

comes to the more complex applications with millions of lines of code, detecting loop 

invariants is not that simple. Generally speaking, only highly educated computer 

scientists can perform such a complex task. Considering the cost of formal verification by 

experts, some scientists study computer programs for formal verification.  

According to [19], “at present, most invariant generation is performed manually, 

and tools for automating invariant detection are limited in power and effectiveness. First, 

invariant detectors cannot discover a complete set of invariants, because the problem of 

determining all invariants is undecidable. Second, invariant generation tools usually 

operate at the level of functional granularity, partly because the idea for invariants 

developed from precondition, post condition and loop invariants, which are derived from 

methods that consider basic blocks, and partly because statement analysis is extremely 

expensive in terms of time.” 

In 2006, Ernst et al. introduced “the Daikon system for dynamic detection of 

likely invariants, which is an implementation of dynamic detection of likely invariants; 

that is, the Daikon invariant detector reports likely program invariants” [20]. These 

invariants are written before and after the related function to be used by the developer to 
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detect any unintended reaction. Dynamic invariant detection executes a piece of code, 

detects the values that it computes, and then reports the invariant (relation), which is true 

over the detected executions [20]. Moreover, it is a machine learning technique for 

arbitrary data to detect invariants in C, C++, Java, and Perl programs, and in record-

structured data sources; Daikon can easily be extended to other applications [20]. 

Figure 5.  Installation of Daikon 

 

Daikon is a tool for dynamically detecting potential invariants and it can be 

downloaded from a download site with unrestricted use [24]. The Figure 5 shows one 

part of the installation process of installing Daikon.  

There are some problems for the existing dynamic invariant detection method. 

Firstly, Daikon can only analyze some of the variables: parameters and return values 

[19]. Secondly, its checklist is extremely limited [19]. It can only detect invariants with 

one, two, and three variable.  

 

http://plse.cs.washington.edu/daikon/download/
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E. CROWDSOURCED FORMAL VERIFICATION  

Crowdsourcing means using a large number of Internet users to perform a 

particular job. In Brabham’s 2008 article [25], crowdsourcing was viewed as an online 

model for distributed production and problem-solving. Since 2006, many examples 

emerged in different fields. Amazon Mechanical Turk (MTurk) is a well-known example 

of crowdsourcing.  

MTurk is a crowdsourcing Internet platform on which users can find other people 

to perform some task that is impossible to do by automation. It is an online website for 

researchers to post annotation tasks so that they can be done by regular users for a small 

payment [26].  

Foldit is another example of crowdsourcing on the gaming industry. Foldit is an 

online game that enables gamers to create correct protein structure models [27]. Foldit 

showed that the potential gamers are likely to solve harder academic problems [28]. 

Ernst et al. [2] studied ways to leverage formal verification by using game-

playing-based verification systems. They introduced the special online game “Pipe Jam,” 

which turns formal verification into a fun game for Internet users. According to [2], “to 

remap the problem into a more accessible form, and use an engaging game to develop a 

significantly larger number of experts capable of solving verification problems in a 

remapped domain. Instead of relying on software engineers, we will develop a new 

skilled verification workforce, and use crowd-sourcing on a much more general audience 

of people who enjoy the challenge of playing a game.” 

Crowdsourcing is a paradigm shift for many tasks, from coding to surveying. 

Many companies are benefiting from that new approach. The CSFV program was 

developed by DARPA to overcome the challenges related to the fact that the formal 

verification techniques are expensive and time consuming [3]. Its main object is to 

examine whether formal verification can be done by a large number of non-experts faster 

and more cost-effectively than by current approaches [3]. Turning software verification 

into a game for Internet users is the main goal of the project [3]. According to [3], “The 

program envisions numerous benefits, including: increased frequency and cost-
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effectiveness of formal verification for more types of common COTS software; greatly 

expanded audience to participate in formal verification; establishment of a permanent 

community of game players interested in improving software security.” The CSFV 

project basically aims to benefit from the efforts of online game by turning their efforts 

into mathematical proofs that can be used to formally verify particular software. This 

project may cause one regular gamer to find a bug similar to Heartbleed.  

There are five games hosted on the website Verigames [3]: 

• CircuitBot: “Link up a team of robots to carry out a mission.” 

• Flow Jam: “Analyze and adjust a cable network to maximize its flow.” 

• Ghost Map: “Free your mind by finding a path through a brain network.” 

• StormBound: “Unweave the windstorm into patterns of streaming 
symbols.” 

• Xylem: “Catalog species of plants using mathematical formulas.” 

StormBound and Xylem are two games specifically focused on loop invariant 

detection. This study mainly focuses on StormBound. However, we need to give some 

general information concerning Xylem to make the games related to LID. The goal of 

Xylem is similar to StormBound. Both aim to make non-expert gamers contribute to LID. 

It is an iPad game where gamers make mathematical observations about synthetic plants, 

and thereby contribute to the formal modeling of a software system [1]. Specifically, 

flowers found on the plants represent the value of variables found inside a source code 

loop (for, while, do), and gamers are asked to find relationships that describe the number 

of flowers [1].  

Figure 6 shows a simple chapter of the game. The numbers next to the flowers are 

the values of two different variables in a loop. The game requires the gamer to create an 

equation from these numbers. For that special example, one solution might be (Orange 

flower) x 6 = (Blue flower). 
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Figure 6.  Xylem Game Interface 

 

If the mathematical model is an accurate enough representation of the 

functionality of the software system, then the outputs of the automated reasoning tools 

are accurate statements about the software system itself [1]. The classic example of a 

bottom-up, data-driven approach is Daikon [20], which uses analyst-provided templates 

to synthesize possible invariants among the variables of interest, discarding the 

propositions that are not attested by concrete test cases. One particular use case where 

bottom-up approaches excel—and the case for which Xylem is intended—is in 

annotating large legacy systems with loop invariants to prove broad categories of safety 

and security properties [1]. 

F. STORMBOUND 

StormBound was developed by scientists from Galois Company, specialists in 

formal methods, and VoidALPHA Company. They developed StormBound in the first 

phase of the project. In a personal interview, Aaron Tomb explained the logic behind the 

StormBound game as follows: Formal verification is a mathematical approach to 

software security. StormBound was developed to contribute to formal verification by 

using the math skills of the gamers.  

Frama-C stands for Framework for Modular Analysis of C programs. It is a set of 

interoperable program analyzers for C programs, which enables the analysis of C 

programs without executing them. Frama-C gathers several static analysis techniques in a 

single collaborative framework [29].  

https://en.wikipedia.org/wiki/C_program
https://en.wikipedia.org/wiki/Program_analyzer
https://en.wikipedia.org/wiki/C_program
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The normal workflow of Frama-C is simple. First, verification experts annotate 

programs with invariants into Frama-C. Then, Frama-C attempts to prove that those 

invariants are actually valid for the underlying program by automatically generating a 

collection of verification conditions (VCs). These VCs are purely logical formulas which, 

if they can be proved, show that the invariants are true invariants of the program. Figure 7 

shows a code that was annotated by Frama-C. 

Figure 7.  A Part of Code Annotated by Frama-C 

 

 

StormBound verification infrastructure made small changes on that flow. Instead 

of having experts insert annotations describing invariants, the verification infrastructure 

inserts placeholders. It assumes that the given loop should have a loop invariant, so it 
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produces a name such as I1 and creates an abstract predicate with that name, 

parameterized by all of the program variables in scope. Considering the program 

variables x, y, and z, it would add an annotation such as ( /*@ loop invariant I1(x, y, z); 

*/ ) before the loop. Once annotations exist in all the appropriate places, Frama-C can 

generate verification conditions. At this point, we do not know the predicate for I1. It can 

be “x < y,” “x + y = z - 1,” or anything else mentioning those variables. The blue printed 

material in the figure-x shows the annotations added by Frama-C. They just have the 

name of the variables.  

Thus, there are no concrete invariants, only automatically-added abstract 

predicates. The gamer’s job in StormBound is to figure out what all uninterpreted 

predicates should be. In other words, gamers are expected to turn the ( /*@ loop invariant 

I1(x, y, z); */ ) into something like “x < y,” “x + y = z - 1.” The key problem is that some 

of the required invariants are complex. Therefore, it could be that game gamers have a 

hard time discovering the complex invariants. However, because abstract predicates are 

introduced for every relevant location, human experts could fill them in later, as if they 

were gamers, but by directly specifying them instead of playing the game. Figure 8 shows 

an example of the StormBound game phases. 
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Figure 8.  StormBound Game Interface 

 

 

In other words, a gamer sees the overall proof structure or part of it while trying 

to generate new assertions. Many of vulnerabilities exist because of undefined behavior 

in the C language. Frama-C has a built-in notion of what is fully-defined by the C 

standard and includes in its VCs checks that the program is operating within the well-

defined subset of the language. The Frama-C work has established that certain Common 

Weakness Enumerations (CWE) can never happen when the code follows a well-defined 

subset of the C language, and the VCs mainly confirm no violation of that subset.  

The only manual effort from people other than gamers required in our current 

game is in these areas: 

• Identifying the particular bits of source code to analyze and feeding them 

into the system. 

• Putting in any additional annotations about high-level properties to check 

(unnecessary if you just want to check for memory safety/well-defined 

behavior). 
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In case of an abstract predicate for two variables, there are many possible subsets 

of x and y. The StormBound brings some of them to gamers so that they can see a general 

relationship between them such as (x>y). The main difficulty is that, in practice, there are 

close to an infinite number of possible values, so it is impossible to test them all 

individually. In StormBound, seeing a representative sample of possible values would be 

enough to help gamers discover relevant patterns.  

G. SUMMARY 

Crowdsourcing is a relatively novel approach. Many new business ideas are using 

that approach in their business model. Amazon MTurk is the most commonly known. 

Crowdsourcing is still continuing to attract new ideas. This evolution merged with the 

problems of software security in the CSFV project. CSFV is a new model for detecting 

software bugs with crowdsourcing. CSFV scientists developed five online games. One of 

them, StormBound, expects its gamers to detect the possible loop invariants in a given 

piece of software. The gamers are not aware of the related piece of software. They are 

attempting to solve the problems similar to other puzzle games. 
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III. DATA ABSTRACTION 

This chapter covers the content of the data. The data provided by StormBound 

developers requires getting the data from files scattered among hundreds of different 

subfolders. Beside that complex location system, the data consists of many assertions that 

are a combination of many interrelated functions. Section A explains the complexity of 

the data. Section B proposes a data translation method that makes the data easy to 

understand. And Section C explains how we manage the data by using a parser that we 

developed for that particular problem. 

A. DATA COMPLEXITY 
For this research, no new data has been collected. Galois Company directly 

provided the data that they have collected from December 2013 to May 2015. Therefore, 

we did not have a control over which types of data were collected. The dataset includes 

48,244 assertions generated by from StormBound gameplay and is considered valid by 

the StormBound backend. The data provided by StormBound developers consists of 

4,473 distinct folders and subfolders. The assertions were stored inside “prop” files in the 

least level folders. It is necessary to pull the data from these “prop” files and push than 

into a single file. 

Figure 9.  Shell Script to Pull Data from Files 

 

The folders are named after connected functions, such as “acache_cancelentry” or 

“tostruct_in_dhcid.” Inside each of these folders are other folders with the name ending 
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with P (), Q(), and I1(). P refers to the pre-condition, Q refers to post-condition, and I 

refers to the loop invariants. Inside some of these subfolders were folders named 

“human.” That indicates that gamers created an invariant for that part of the function. 

Inside that are the numbered folders, all of which have a single file named “Prop.” 

Assertions were stored inside these files. Using the shell script (see Figure 9), we copies 

48,244 assertions from the “prop” files into a single text file.  

Figure 10 shows three examples of these assertions, which are written in Haskell 

programming language, a standardized and general-purpose purely functional 

programming language [30]. Assertions are combinations of many logical and 

mathematical functions. Each additional function in an assertion increases its complexity.  

Figure 10.  Examples of the Assertions 

 

In Haskell, the function names are written before the parameters. For example, 

FEq(Var “x”)(Var “y”) indicates that the variable “x” is equal to variable “y.” For 

readers, it is exceptionally hard to understand the assertions with more than three 

functions. Therefore, a translation of the data from the current format to a more 

comprehensible format is crucial to analyze it.  

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Purely_functional
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Programming_language
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Figure 11 shows the cumulative distribution function diagram of the number of 

variables in each StormBound loop invariant. Almost 80 percent of Stormbound loop 

invariants has less than three variables. That shows that the data is not too complex in 

terms of the variables. Secondly, the average number of variables is 1.8. This study does 

not differentiate the variables with the same name. All variables indicate a different 

variable than the other variables in the same loop invariant even if their names are same. 

That is a limitation of the study. More accurate analysis is assumed to refer to a lesser 

complexity level. 

Figure 11.  Variables CDF Diagram 

 

 

Figure 12 shows the cumulative distribution function diagram of the number of 

parameters in each StormBound loop invariant. Parameters refer to the expression names 

such as Add, Sub, Mul, Div, Mod, Deref, SizeOf, ArrayIx , FNot, FOr, FEq, FGt , FNeq, 
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FValid. Almost 80 percent of Stormbound loop invariants has less than three variables. 

That shows that the data has moderately complex in terms of the variables. Secondly, the 

average number of variables is 2.9. This study does not differentiate the parameters 

according to their contribution to the complexity of a loop invariant. Parameters such as 

FEq an FGt adds more complexity than parameters such as Add, Sub. That is a limitation 

of the study. More accurate analysis is assumed to refer to a higher complexity level. 

Figure 12.  Parameters CDF Diagram 

 

Figure 13 shows the statistics about the parameters of StormBound loop 

invariants in detail. It shows how many times a particular parameter used in total, what 

the average number of usage of any particular parameter in each loop invariants is what  

the range of any particular parameter is. This table shows that some of the parameters 

were used more than the others. As an example, the number of Deref is 36426, while the 

number of SizeOf is 1428. 
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Table 1.   Statistical Information about StormBound Loop Invariants 

B. DATA TRANSLATION 

The Haskell language is hard to read for readers with no experience with it. Even 

for readers with a programming background, Haskell language requires extra effort to 

understand a given assertion. 

Figure 13 was generated by using  explanations provided by StormBound 

developers, who show how to interpret the assertions. The “data term” indicates the most 

inner part of the assertions. The most minute part of the data is constructed by “var Text” 

and “Const Integer.” “Var Text” refers to a variable with the name defined in the text 
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after “Var,” and “Const Integer” refers to a constant with the value of integer. The 

functions “Add,” “Mul,” “Sub,” “Div,” and “Mod” are used to produce terms from two 

other terms. They are basic mathematical operations used for addition, subtraction, 

multiplication, division, and the modular of two values. “Deref” is the dereferencing 

function, which returns the value stored in the pointed location. “SizeOf” is the function 

that generates the size of a given variable. “ArrayIx” is the function that stores a 

sequential collection of elements of the same type. “ArrayIx” function has two 

parameters: first, showing its name; and second, showing element numbers of the stated 

array. “Getfield” is the function that searches the public field with the specified name.  

Figure 13.  Data Abstraction Table 

 

The raw assertion data as represented in Figure 10 was too complex to analyze. That 

is why we developed an abstraction methodology. We categorized the expression into three 

levels. Each level expression consists of either the same or lower-level expressions. The first 

level consists of the operations with terms that are called variables and constants. Variables 

are the data that have different values throughout the execution of the loop, while the 

constant always has the same value. The output of the first-level operation is 

another term. Then comes the second level, which takes the output from the first level.  

Second-level expressions are the most common expressions. They consist of two first- 

level expressions. Figure 13 shows the organization of a second-level expression. These 
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expressions refer equality, non-equality, or greatness. FEq is the function of equality. It 

has two term inputs. It compares them, and if they are equal, then it returns true. 

Otherwise, it returns false. FGt is the function of greater. It indicates greatness between 

two terms. FNeq is the inverse of FEq. The FValid formula states that a pointer is valid at 

the first address for the offsets between the second and third terms. The third-level 

expressions are FTrue, FFalse, FNot, FAnd, and FOr. Third-level expressions have at 

most two formulas coming from the second level. These formulas represent either “True” 

or “False.” The hierarchical structure of the data is shown in the Figure . Each level 

produces an output value that can be used in the same level or one level below as an input 

value. Figure 14 shows an example of second level operations in a loop invariant. 

Figure 14.  Second-Level Operations Overview 

In Figure 15, the upper expression shows a typical StormBound assertion, and the 

lower expression shows its visual explanation. In the first level, a constant is added into a 

variable called “level.” In the second level, the output of the previous addition is 

compared with another variable “message_0.” In the third level, the output of the 

previous expression has performed an “or” operation with FTrue. While reading the data, 

readers should be careful pairing the parenthesis and referring the parenthesis to the right 
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function. The average number of parentheses in the data is 6.5. The total number of 

parenthesis is 314,730. 

Figure 15.  Data Translation Example 

Figure 16 shows a translation of one of the assertions into C language. For the 

readers with no programming background, assertions basically have two equations: 

(i+line=line) and (i+line > i-mysize). The assertion combines them with an “or” function. 

This means that if one of them is true, the assertion is true. Readers find the translated 

expression easier to understand. However, the example in Figure 16 is one of the short 

loop invariants inside the data. There are many longer expressions inside the data. 
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Figure 16.  Translation of a Loop Invariant  

 

C. DATA MANAGEMENT 

Translating one assertion from Haskell language into C language is simple; 

however, there are 48,244 assertions that need to be analyzed. That burdensome task 

requires an automation system. We recognized that our data should be translated into a 

more concise and comprehensible format. Considering the high number of data, such a 

task should be done by a computer program. For that purpose, we developed a parser, 

which turns the variants written in Haskell language into more comprehensible format, 

which makes the manual analysis easier. The codes of parser are shown in the 

Appendix.A. The parser reads the assertion from a text file named “input” and writes the 

translated version into a text file named “output.” 

Figure 17 shows the main algorithm used in parser. It loads each loop invariant 

provided into “input” text file as a string variable called assertion. A “for” statement used 

to read each char inside the assertion variable. It checks if the char value is one of the 

correspondence letter. In case of the algorithm in Figure 17, it checks for FEq statement. 

Before running the parser, we changed the all “FEq” statements into “Q” letter to make it 

easier for the program to match the referred statement. The regular expression library of c 

programming language can be used to shorten the process. When the parser detects a “Q” 

letter, it checks the char variable coming after “Q” letter. If that value is a “(“ sign, that 

indicates that an equality function starts. Then the code calls the pairing function which 

find the “)” as a pair of a given “(.” Then the code knows that this is an equality function 
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and the numbers of the parenthesis corresponding with the function. The second part of 

the code changes the “Q” letter with and “=“ sing and replace it after the paired 

parenthesis. 

Figure 17.  Parser Algorithm 

   

As an example, FGt(“msgset”)(Sub(Const)(SizeOf(“sock”))) is 

translated into msgset>(Const)-SizeOf(“sock”) by our Parser. The assertions show 

that a variable named “msfset” is greater than the number produced by subtracting a 

constant value from the size of the variable named “sock.” The difference between two 

expressions is so clear that the second one is easier to analyze. Parser was developed with 

C programming language. It facilitates the data analysis process well. We were able to 

see the variants. Figure 18 shows an example of loop invariant translated by parser. 

Clearly, second representation is easy to read for a human expert. The example loop in 

Figure 18 has three statements connected to each other with OR functions. The second 

statement in the same figure shows the translation of the first statement performed by 

parser. 
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Figure 18.  A loop invariant translated by parser 

 

D. SUMMARY 

Variants detected by StormBound gamers are stored as expressions in Haskell 

language. Haskell style is not as clearly understandable as other languages, such as C, 

C++, or Java. To analyze the data better, gamers’ variants should be translated from 

Haskell language to a more comprehensible format. Parser is a tool developed by C 

programming language to read the invariants written with Haskell language and write the 

translated variants into a text file.  
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IV. METHODOLOGY AND FINDINGS 

This chapter proposes the methodology used in the thesis. Besides using LID 

gamers, there are two other methods for detecting a loop invariant: expert human 

detection and machine (computer) detection. Expert solutions are known to be high 

quality while machine solutions are known to be low quality for the reasons explained in 

the previous chapter. We propose that machine detectability of a given loop invariant is 

decent criteria for quality assessment of a solution of a LID gamer.  

Therefore, the first section elaborates on why we choose machine detectability. 

The second section elaborates on how we can determine the machine detectability of a 

loop invariant. The third section proposes an automated tool to determine machine 

detectability of multiple loop invariants. We used that tool to examine the 48244 loop 

invariants detected by StormBound gamers. The fourth section demonstrates our 

examinations. 

A. CRITERIA: MACHINE DETECTABILITY 

The CSFV project aims to find a way of using a crowd for formal verification. 

The realization of that aim depends largely on the satisfactory quality of the solutions 

(assertions) produced by online gamers. StormBound game requests from players to solve 

a puzzle the solution of which also produces loop invariants for the related piece of code. 

Consequently, its overall success primarily depends on the quality of players’ invariants. 

One way of measuring quality is to compare one item to a corresponding item. That does 

not provide absolute accuracy; however, that type of measuring gives some idea about the 

quality of the referred item in cases where it is not possible to measure quality in any 

other way. In the case of LID, a counterpart can be one of the other detection methods. 

There are two conventional loop invariant detection methods: human experts and 

automated system.  

To make a quality comparison between assertions of StormBound and assertions 

of human experts is clearly the most accurate and useful way; however, for many reasons, 

doing so is extremely hard. Firstly, experts have different qualification levels. Similarly, 
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StormBound gamers have different skills. Making a comparison between those two 

different samples does not provide healthy results. Secondly, making an expert and a 

StormBound gamer solve the same problem is too hard.  

Besides human expertise, some computer programs (automated systems) can 

detect loop invariants from a given piece of code. Having a limited checklist makes 

automated systems detect poor quality invariants. Automated systems are blind for 

detecting any other invariant not stated in the checklist. Using an automated system as a 

counterpart is a better approach becaues their quality is known to be poor. Because 

automated systems detect poor quality invariants, the checklist can be used to evaluate 

any given loop invariant. In this study, we chose the automated systems as the 

counterpart for our methodology. The relative quality over the automated system of a 

given assertion detected by a StormBound user is the criteria we used. The invariants 

detected by an automated system are regarded as having poor quality.  

In this study, we defined an invariant that can be detectable by an automated 

system as machine-detectable. We propose that the machine detectability is good quality 

criteria for gamers’ efforts. The checklist (capability list) of an automated tool can be 

used to determine whether a given invariant is machine-detectable or not. 

B. INVARIANT CHECKLIST OF AN AUTOMATED SYSTEM 

The main drawback of an automated LID is its low number of checklist items, 

which indicates the possible invariants to be detected. These checklists were defined by 

the developer of the application and can be extended. As a typical example of an 

automated LID, Daikon can check for 75 different invariants, including being constant (x 

= a), non-zero (x 6= 0), being in a range (a ≤ x ≤ b), linear relationships (y = ax + b), 

ordering (x ≤ y), functions from a library (x = fn(y)), sortedness (x is sorted), and an 

easily extendable list [20]. In this study, we use the DAIKON checklist for our 

methodology. The complete Daikon checklist is given in Appendix.B. 

There are two ways to check whether a given StormBound assertion is detectable 

by Daikon. Firstly, we can use the related code to run on DAIKON and compare the 

result, whether the output of Daikon and StormBound mechanism is same. If they are 
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same, then we know that Daikon can find that invariant; thus, the StormBound game is 

not necessary to detect that invariant. That is the most accurate method, yet it is hard to 

accomplish. It requires that each piece of code be run in Daikon and the result recorded.  

Secondly, we can use the Daikon checklist to see whether a given assertion is 

inside that list. If it is inside that list, we can easily affirm that this particular assertion can 

be detected by Daikon and therefore know that it has poor quality. In this study, we use 

the second method.  

The checklist comparison requires a checking table that was filled with both 

looking into the Daikon checklist and the assertions detected by StormBound gamers. It 

is really hard to build such a table. This table needs to have two main columns: functions 

used in StormBound assertions, and their detectability by Daikon.  

The assertions have many subfunctions and need to be divided into small parts for 

a better diagnosis. Daikon ignores variable names when inferring invariants. In this study, 

we ignored the name of the variables and regarded them just as “VARIABLES” [24], or 

“VAR,” as a more condensed format. Similarly, all constant values were regarded as 

“CONSTANT” or “CON,” regardless of value.  

Secondly, we can shrink the data more by making the following translations. 

Assuming that a variable added to a constant is another variable, 

Add(VARIABLE)(CONSTANT) can be regarded as another VARIABLE. The 

conversion table (see Table 2) shows the possible conversions. 

Table 2.   Conversion Table 

Add(CON)(VAR) VAR Div(CON)(VAR) VAR ArrayIx(VAR)(CON) VAR 
Add(VAR)(CON) VAR Div(CON)(CON) CON GetField(VAR)NAME VAR 
Add(CON)(CON) CON Div(VAR)(CON) VAR Add(VAR)(VAR) VAR 
Sub(CON)(VAR) VAR Mod(CON)(VAR) VAR Sub(VAR)(VAR) VAR 
Sub(CON)(CON) CON Mod(CON)(CON) CON Mul(VAR)(VAR) VAR 
Sub(VAR)(CON) VAR Mod(VAR)(CON) VAR Div(VAR)(VAR) VAR 
Mul(CON)(VAR) VAR Deref(VAR) VAR Mod(VAR)(VAR) VAR 
Mul(CON)(CON) CON SizeOf(CON) CON     
Mul(VAR)(CON) VAR SizeOf(VAR) VAR     
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C. AN AUTOMATED TOOL TO CHECK DETECTABILITY 

Checking machine detectability of a single invariant is not that hard. However, 

checking hundreds of them requires automation. For that purpose, we developed the 

checker, an Excel file with a VBA module. In our model, we assumed that all variables 

are independent from other variables inside the same invariant and that their names are 

unimportant. Before running the checker, we deleted all variable names from the 

invariants.  

The checker has four sheets named “main,” “assumptions,” “detectability,” and 

“results.” In the “main” sheet, the user adds the loop invariants to be checked. In the 

“assumption” sheet, the user defines basic assumptions to be implemented into the 

invariants. For example, Add(Variable)(Constant) is equal to another variable. 

Implementing these assumptions into a given invariant basically simplifies it. After that 

simplification operation, the number of variables becomes the minimum. For example, 

the expression Add(Add(Variable)(Constant))(Constant) becomes 

(Variable) after simplification. Our assumptions include the following: 

• Output of any first-level operation with two variables is variable. 

• Output of any first-level operation with one constant and a variable is 
variable. 

• Output of any first-level operation with two constants is variable. 

• Output of any first-level operation with one constant is a constant. 

• Output of any first-level operation with one variable is a variable. 

Secondly, the checker checks for detectability of the invariant that is simplified in the 

previous process by using the detectability table in the sheet “detectability.” We produced 

the detectability table by using the Daikon checklist (see Appendix B). Table 3 shows our 

detectability table. We assumed that the second-level expressions stated in Table 3 are 

machine detectable. In other words, Daikon can easily detect them. 
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Table 3.   Detectability Table 

FEq(VAR)(VAR) FGt(CON)(CON) 
FEq(CON)(VAR) FGt(VAR)Null 
FEq(VAR)(CON) FNeq(VAR)(VAR) 
FEq(CON)(CON) FNeq(CON)(VAR) 
FEq(VAR)Null FNeq(VAR)(CON) 
FGt(VAR)(VAR) FNeq(CON)(CON) 
FGt(CON)(VAR) FNeq(VAR)Null 
FGt(VAR)(CON)  

Figure 19.  Detectability 

 

In Figure 19, the upper figure shows a typical invariant, and the lower figure 

shows a decomposed form of it in three layers that was explained in the third chapter. 

The first-level operations consist of many recursive first-level operations. On the other 

hand, second-level operations are not recursive. The checker has two loops: one for the 

first level, and one for the second level. The first loop simplifies the first-level expression 

into either “VARIBLE” or “CONSTANT.” And the second loop checks for detectability. 

Figure 20 shows the VBA code of the checker.  
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Figure 20.  Excel VBA Codes for Checker 

  

We developed checker by using the Microsoft Excel VBA development tool. It 

can easily be developed by using another language, such as Java, C.  

D. FINDINGS 

Using assumptions criteria stated in previous section and using the detectability 

criteria stated in Table 3, we found that 37,718 of the assertions are machine detectable. 

That number refers to 78% of the whole data. When we deleted the following 

detectability criteria from the productivity sheet, we observed that the detectability 

number decreased to 37,130.  

Table 4.   Weak Assumptions 

Add(VAR)(VAR) 
Sub(VAR)(VAR) 
Mul(VAR)(VAR) 
Div(VAR)(VAR) 
Mod(VAR)(VAR) 
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This shows that any change in the assumptions changes the output value. We 

deleted the value inside Table 4 from detection table, because we believe that these are 

the weakest assumptions. Deleting those from the assumptions list increases the accuracy. 

Each assumption requires a more detailed analysis.  

E. SUMMARY 

The CSFV project needs criteria to measure the quality of gamers’ efforts. This 

study proposes that machine detectability can be used as quality criteria. The checker is a 

tool that can be used to find out if a particular loop invariant is machine detectable. 

According to the result from the checker, 78% of the invariants produced by StormBound 

Players are machine detectable. 
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V. CONCLUSIONS AND FUTURE WORK 

A. SUMMARY AND CONCLUSION 

The main goal of this study is to propose criteria for the loop invariants produced 

by players of StormBound , a CSFV game. This study proposes machine detectability as 

the quality criteria. Machine detectability refers to whether a given loop invariant that 

was produced by a CSFV gamer can be detected by an automated loop invariant detector. 

This study used Daikon as an example automated loop invariant detector. Moreover, this 

study provided two algorithms: a parser that translates an invariant written in Haskell 

language into a more understandable format and a checker that determines whether an 

invariant can be detected by Daikon. Finally, this study states the percentage of machine 

detectability of invariants detected by gamers. 

In this study, we searched a method to measure the quality of the loop invariants 

produced by StormBound gamers. Firstly, we examined the 48,244 loop invariants 

collected by the StormBound team and developed a parser to turn them into a more 

understandable format. Secondly, we proposed that machine detectability can be used as 

the quality criteria. Thirdly, we examined the invariants for machine detectability. 

Finally, we developed a script to automate that examination process.  

Figure 21 shows the essence of this study. The left circle refers to the loop 

invariants detected by StormBound players, while the right circle refers to the checklist of 

automated systems. The area that shows the overlapping parts of both circles indicates the 

poor quality loop invariants. 
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Figure 21.  Quality Criteria of Loop Invariants 

 

According to the result from the checker, 78% of the invariants in the dataset are 

machine detectable and therefore of poor quality. Consequently, 22% of the invariants in 

the dataset are not machine detectable and therefore are potentially of high quality. As an 

overall contribution, the steps and criteria used for conducting this work provides a 

systematic method to measure the quality of loop invariants produced by CSFV gamers, 

and human analysts in general. This study demonstrates that the stormbound game can 

potentially be used to attract Internet users to produce loop invariants that would 

otherwise require human expert effort. 

B. LIMITATIONS AND FUTURE WORK 

These findings depend on several assumptions, and therefore, the accuracy of the 

results partially depends on the accuracy of the assumptions. More accurate assumptions 

require expert level studies in automated loop invariant detection. Secondly, we only used 

Daikon to represent automated LID, but there are additional tools. Studies should be 

performed adjusting the assumptions referring to the other tools. Thirdly, it would be 

beneficial to apply the proposed methodology to study output from other CSFV games in 
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order to properly evaluate the potential of the CSFV concept. Finally, we developed the 

checker tool with Microsoft Excel and it requires Excel software to run. Studies should 

be performed to develop a general tool to check the machine detectability of a given loop 

invariant on other platforms. That tool could increase the functionality of the checker. 
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APPENDIX A. PARSER CODES 

/* Parser for Haskell to C */ 

//Parser reads the input file line by line and write them in c into output file 

 

#include<stdio.h> 

#include <string.h> 

 

int findPair(int first,char assertion[]); 

 

int findPair(int first,char assertion[]) 

{ 

 int Parenthesis=0; 

 int a; 

 if (assertion[first]!='(') 

  { 

   return 0; 

  } 

a=first; 

 

 while( assertion[a] !=  '\0' ) 

    {     

   if ( assertion[a] == '(' )  

   {                    

          Parenthesis=Parenthesis+1; 

      }else if (assertion[a]==')') 

      { 

    Parenthesis=Parenthesis-1; 

   } 

   if (Parenthesis==0) 

   { 

    return a; 

   } 

  a=a+1; 

    }   

} 

  

void SpaceRemover(char* statement); 

  

void SpaceRemover(char* statement) 

{ 

  char* first = statement; 

  char* second = statement; 

  while(*second != 0) 
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  { 
    *first = *second++; 
    if(*first != ' ') 
      first++; 
  } 
  *first = 0; 
} 
 
int control; 
main() 
{ 
 FILE *inputFile; 
 inputFile = fopen ("input.txt","r"); 
  
 FILE *outputFile; 
 outputFile = fopen ("output.txt","w"); 
 
 char changeLetter; 
  int a,j,pair,pair2,pair3; 
  
 char assertion[2500]; 
 char temp[2500]; 
 
 int nextLine=0; 
 
 while (feof(inputFile) == 0) 
 { 
  nextLine = nextLine +1; 
  puts ("---------------------------"); 
  fscanf (inputFile, "%s \n", assertion); 
    
 
int control; 
/*in the input.txt file change FTrue into (FTrue) and Null into (Null)*/ 
 
//in the input.txt file change (Var" into (" 
//in the input.txt file change FOr into V 
//in the input.txt file change FNot into C 
//in the input.txt file change FEq into Q 
//in the input.txt file change FGt into G 
//in the input.txt file change FNeq into N 
//in the input.txt file change Add into A 
//in the input.txt file change Sub into S 
//in the input.txt file change Mul into M 
//in the input.txt file change Div into D 
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//in the input.txt file change FValid into AV 

//in the input.txt file change the ArrayIx(Var"name")(Var"name") into 

J("name")("name"), this function does just ArrayIx(V... 

//in the input.txt file change GetField( into PP( 

//in the input.txt file change Deref( into Z( 

 

a=0; 

while( assertion[a] !=  '\0' ) 

   {    

     pair= findPair(a+1,assertion); 

     if (assertion[a]=='R' & pair!=0)   

  { 

   for (j=a; j<=pair; j=j+1) 

   { 

   assertion[j]=assertion[j+1];  

   } 

   assertion[pair]='|'; 

   pair3=findPair(pair+1,assertion); 

   assertion[a]='{'; 

   assertion[pair-1]='}'; 

   assertion[pair+1]='{'; 

   assertion[pair3]='}'; 

    

  } 

   a=a+1; 

} 

//FNot 

a=0; 

while( assertion[a] !=  '\0' ) 

{    

    pair= findPair(a+1,assertion); 

     

 if (assertion[a]=='C' & pair!=0)   

  { 

  // printf ("%s" ,"hello"); 

   assertion[a+1]='{'; 

   assertion[pair]='}'; 

   assertion[a]='!';    

  } 

   a=a+1; 

} 

//FEq 

a=0; 

while( assertion[a] !=  '\0' ) 

{  
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pair= findPair(a+1,assertion); 
 if (assertion[a]=='Q'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='=';     
  } 
   a=a+1; 
} 
//FGt 
a=0; 
while( assertion[a] !=  '\0' ) 
{  
pair= findPair(a+1,assertion);  
 if (assertion[a]=='G'& pair!=0)     
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='>';       
   } 
    a=a+1; 
} 
//FNeq 
a=0; 
while( assertion[a] !=  '\0' ) 
{  
pair= findPair(a+1,assertion);  
if (assertion[a]=='N'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='!';      
  } 
   a=a+1; 
} 
//Add 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
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 pair= findPair(a+1,assertion); 
 if (assertion[a]=='A'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='+';      
  } 
   a=a+1; 
} 
//Sub 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
 pair= findPair(a+1,assertion); 
 if (assertion[a]=='S'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='-';      
  } 
   a=a+1; 
} 
//Mul 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
pair= findPair(a+1,assertion); 
  if (assertion[a]=='M'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='x';      
  } 
   a=a+1; 
} 
//Div 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
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 pair= findPair(a+1,assertion); 
 
   if (assertion[a]=='D'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair]='/';      
  } 
   a=a+1; 
} 
//FValid 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
 pair= findPair(a+1,assertion); 
  if (assertion[a]=='V'& pair!=0)    
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j-1]=assertion[j+1];  
   } 
   assertion[pair-1]='f'; 
    
   pair2= findPair(pair+1,assertion); 
   for (j=pair; j<=pair2; j=j+1) 
   { 
   assertion[j]=assertion[j+1];  
   } 
   assertion[pair2]='f';      
  } 
   a=a+1; 
} 
//ArrayIx 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
pair= findPair(a+1,assertion); 
  if (assertion[a]=='J'& pair!=0)      
  { 
   pair3=findPair(pair+1,assertion); 
    
   assertion[a]=' '; 
   assertion[a+1]=' '; 



 51 

   assertion[a+2]=' '; 
   assertion[pair]=' '; 
   assertion[pair-1]=' '; 
   assertion[pair+1]='['; 
   assertion[pair3]=']'; 
 
  } 
   a=a+1; 
} 
//Getfield 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
 pair= findPair(a+1,assertion); 
  if (assertion[a]=='P'& pair!=0)      
   
  { 
   for (j=a; j<=pair; j=j+1) 
   { 
   assertion[j-1]=assertion[j+1];  
   } 
   assertion[pair-1]='-'; 
   assertion[pair]='>'; 
  } 
   a=a+1; 
} 
//Deref 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
 pair= findPair(a+1,assertion); 
  if (assertion[a]=='Z' & pair!=0)      
  { 
   assertion[a]=' '; 
   assertion[a+1]='*'; 
   assertion[pair]=' '; 
  } 
   a=a+1; 
} 
//refine {{{ 
a=0; 
while( assertion[a] !=  '\0' ) 
{ 
 if (assertion[a]=='{' & assertion[a+1]=='{')      
 { 
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  assertion[a]=' '; 
 }    
 a=a+1; 
} 
SpaceRemover(assertion);        
fprintf (outputFile, "%s\n" , assertion); 
  
} 
  
fclose(outputFile);  
fclose(inputFile); 
return 0; 
} 
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APPENDIX B. DAIKON CHECKLIST 

Daikon checklist consists of the loop invariant types that Daikon can detect. It was drawn from 
Daikon Invariant Detector User Manual [24].  
 

AndJoiner:This is a special invariant used internally by Daikon to represent an antecedent 
invariant in an implication where that antecedent consists of two invariants anded together. 

CommonFloatSequence:Represents sequences of double values that contain a common subset. 
Prints as {e1, e2, e3, ...} subset of x[]. 

CommonSequence:Represents sequences of long values that contain a common subset. Prints 
as {e1, e2, e3, ...} subset of x[]. 

CommonStringSequence:Represents string sequences that contain a common subset. Prints as 
"{s1, s2, s3, ...} subset of x[]". 

CompleteOneOfScalar:Tracks every unique value and how many times it occurs. 
CompleteOneOfString:Tracks every unique value and how many times it occurs. 
DummyInvariant:This is a special invariant used internally by Daikon to represent invariants 

whose meaning Daikon doesn’t understand. The only operation that can be performed on a 
DummyInvariant is to print it.  

EltLowerBound:Represents the invariant that each element of a sequence of long values is greater 
than or equal to a constant. Prints as x[] elements &gt;= c. 

EltLowerBoundFloat:Represents the invariant that each element of a sequence of double values is 
greater than or equal to a constant. Prints as x[] elements &gt;= c. 

EltNonZero:Represents the invariant "x != 0" where x represents all of the elements of a sequence 
of long. Prints as x[] elements != 0. 

EltNonZeroFloat:Represents the invariant "x != 0" where x represents all of the elements of a 
sequence of double. Prints as x[] elements != 0. 

EltOneOf:Represents sequences of long values where the elements of the sequence take on only a 
few distinct values. Prints as either x[] == c (when there is only one value), or as x[] one of {c1, c2, 
c3} (when there are multiple values). 

EltOneOfFloat:Represents sequences of double values where the elements of the sequence take on 
only a few distinct values. Prints as either x[] == c (when there is only one value), or as x[] one of {c1, c2, 
c3} (when there are multiple values). 

EltOneOfString:Represents sequences of String values where the elements of the sequence take on 
only a few distinct values. Prints as either x[] == c (when there is only one value), or as x[] one of {c1, c2, 
c3} (when there are multiple values). 

EltRangeFloat.EqualMinusOne:Internal invariant representing double scalars that are equal to 
minus one. Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same 
thing 

EltRangeFloat.EqualOne:Internal invariant representing double scalars that are equal to one. Used 
for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

EltRangeFloat.EqualZero:Internal invariant representing double scalars that are equal to zero. 
Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing. 

EltRangeFloat.GreaterEqual64:Internal invariant representing double scalars that are greater than 
or equal to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the 
same thing 

EltRangeFloat.GreaterEqualZero:Internal invariant representing double scalars that are greater 
than or equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the 
same thing 

EltRangeInt.BooleanVal:Internal invariant representing longs whose values are always 0 or 1. 
Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing. 

EltRangeInt.Bound0_63:Internal invariant representing longs whose values are between 0 and 63. 
Used for non-instantiating suppressions. Will never print since Bound accomplishes the same thing. 
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EltRangeInt.EqualMinusOne:Internal invariant representing long scalars that are equal to minus 
one. Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

EltRangeInt.EqualOne:Internal invariant representing long scalars that are equal to one. Used for 
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

EltRangeInt.EqualZero:Internal invariant representing long scalars that are equal to zero. Used for 
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing. 

EltRangeInt.Even:Invariant representing longs whose values are always even. Used for non-
instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is printed. 

EltRangeInt.GreaterEqual64:Internal invariant representing long scalars that are greater than or 
equal to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same 
thing 

EltRangeInt.GreaterEqualZero:Internal invariant representing long scalars that are greater than or 
equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same 
thing 

EltRangeInt.PowerOfTwo:Invariant representing longs whose values are always a power of 2 
(exactly one bit is set). Used for non-instantiating suppressions. Since this is not covered by the Bound or 
OneOf invariants it is printed. 

EltUpperBound:Represents the invariant that each element of a sequence of long values is less 
than or equal to a constant. Prints as x[] elements &lt;= c. 

EltUpperBoundFloat:Represents the invariant that each element of a sequence of double values is 
less than or equal to a constant. Prints as x[] elements &lt;= c. 

EltwiseFloatEqual:Represents equality between adjacent elements (x[i], x[i+1]) of a double 
sequence. Prints as x[] elements are equal. 

EltwiseFloatGreaterEqual:Represents the invariant &ge; between adjacent elements (x[i], x[i+1]) 
of a double sequence. Prints as x[] sorted by &ge;. 

EltwiseFloatGreaterThan:Represents the invariant &gt; between adjacent elements (x[i], x[i+1]) of 
a double sequence. Prints as x[] sorted by &gt;. 

EltwiseFloatLessEqual:Represents the invariant &le; between adjacent elements (x[i], x[i+1]) of a 
double sequence. Prints as x[] sorted by &le;. 

EltwiseFloatLessThan:Represents the invariant &lt; between adjacent elements (x[i], x[i+1]) of a 
double sequence. Prints as x[] sorted by &lt;. 

EltwiseIntEqual:Represents equality between adjacent elements (x[i], x[i+1]) of a long sequence. 
Prints as x[] elements are equal. 

EltwiseIntGreaterEqual:Represents the invariant &ge; between adjacent elements (x[i], x[i+1]) of 
a long sequence. Prints as x[] sorted by &ge;. 

EltwiseIntGreaterThan:Represents the invariant &gt; between adjacent elements (x[i], x[i+1]) of a 
long sequence. Prints as x[] sorted by &gt;. 

EltwiseIntLessEqual:Represents the invariant &le; between adjacent elements (x[i], x[i+1]) of a 
long sequence. Prints as x[] sorted by &le;. 

EltwiseIntLessThan:Represents the invariant &lt; between adjacent elements (x[i], x[i+1]) of a 
long sequence. Prints as x[] sorted by &lt;. 

Equality:Keeps track of sets of variables that are equal. Other invariants are instantiated for only 
one member of the Equality set, the leader. If variables x, y, and z are members of the Equality set and xis 
chosen as the leader, then the Equality will internally convert into binary comparison invariants that print 
as x == y and x == z. 

FloatEqual:Represents an invariant of == between two double scalars. 
FloatGreaterEqual:Represents an invariant of &ge; between two double scalars. 
FloatGreaterThan:Represents an invariant of &gt; between two double scalars. 
FloatLessEqual:Represents an invariant of &le; between two double scalars. 
FloatLessThan:Represents an invariant of &lt; between two double scalars. 
FloatNonEqual:Represents an invariant of != between two double scalars. 
FunctionBinary.BitwiseAndLong_{xyz, yxz, zxy}:Represents the invariant x = BitwiseAnd (y, 

z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are 
checked. 
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FunctionBinary.BitwiseOrLong_{xyz, yxz, zxy}:Represents the invariant x = BitwiseOr (y, 
z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are 
checked. 

FunctionBinary.BitwiseXorLong_{xyz, yxz, zxy}:Represents the invariant x = BitwiseXor (y, 
z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are 
checked. 

FunctionBinary.DivisionLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = 
Division (y, z) over three long scalars. Since the function is non-symcriteria, all six permutations of the 
variables are checked. 

FunctionBinary.GcdLong_{xyz, yxz, zxy}:Represents the invariant x = Gcd (y, z) over three long 
scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are checked. 

FunctionBinary.LogicalAndLong_{xyz, yxz, zxy}:Represents the invariant x = LogicalAnd (y, 
z) over three long scalars. For logical operations, Daikon treats 0 as false and all other values as true. Since 
the function is symcriteria, only the permutations xyz, yxz, and zxy are checked. 

FunctionBinary.LogicalOrLong_{xyz, yxz, zxy}:Represents the invariant x = LogicalOr (y, 
z) over three long scalars. For logical operations, Daikon treats 0 as false and all other values as true. Since 
the function is symcriteria, only the permutations xyz, yxz, and zxy are checked. 

FunctionBinary.LogicalXorLong_{xyz, yxz, zxy}:Represents the invariant x = LogicalXor (y, 
z) over three long scalars. For logical operations, Daikon treats 0 as false and all other values as true. Since 
the function is symcriteria, only the permutations xyz, yxz, and zxy are checked. 

FunctionBinary.LshiftLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = Lshift (y, 
z) over three long scalars. Since the function is non-symcriteria, all six permutations of the variables are 
checked. 

FunctionBinary.MaximumLong_{xyz, yxz, zxy}:Represents the invariant x = Maximum (y, 
z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are 
checked. 

FunctionBinary.MinimumLong_{xyz, yxz, zxy}:Represents the invariant x = Minimum (y, z) over 
three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are checked. 

FunctionBinary.ModLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = Mod (y, 
z) over three long scalars. Since the function is non-symcriteria, all six permutations of the variables are 
checked. 

FunctionBinary.MultiplyLong_{xyz, yxz, zxy}:Represents the invariant x = Multiply (y, z) over 
three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are checked. 

FunctionBinary.PowerLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = Power (y, 
z) over three long scalars. Since the function is non-symcriteria, all six permutations of the variables are 
checked. 

FunctionBinary.RshiftSignedLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = 
RshiftSigned (y, z) over three long scalars. Since the function is non-symcriteria, all six permutations of the 
variables are checked. 

FunctionBinary.RshiftUnsignedLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = 
RshiftUnsigned (y, z) over three long scalars. Since the function is non-symcriteria, all six permutations of 
the variables are checked. 

FunctionBinaryFloat.DivisionDouble_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = 
Division (y, z) over three double scalars. Since the function is non-symcriteria, all six permutations of the 
variables are checked. 

FunctionBinaryFloat.MaximumDouble_{xyz, yxz, zxy}:Represents the invariant x = Maximum 
(y, z) over three double scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy 
are checked. 

FunctionBinaryFloat.MinimumDouble_{xyz, yxz, zxy}:Represents the invariant x = Minimum (y, 
z) over three double scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are 
checked. 

FunctionBinaryFloat.MultiplyDouble_{xyz, yxz, zxy}:Represents the invariant x = Multiply (y, 
z) over three double scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are 
checked. 
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GuardingImplication:This is a special implication invariant that guards any invariants that are over 
variables that are sometimes missing. For example, if the invariant a.x = 0 is true, the guarded implication 
is a != null \rArr; a.x = 0. 

Implication:The Implication invariant class is used internally within Daikon to handle invariants 
that are only true when certain other conditions are also true (splitting). 

IntEqual:Represents an invariant of == between two long scalars. 
IntGreaterEqual:Represents an invariant of &ge; between two long scalars. 
IntGreaterThan:Represents an invariant of &gt; between two long scalars. 
IntLessEqual:Represents an invariant of &le; between two long scalars. 
IntLessThan:Represents an invariant of &lt; between two long scalars. 
IntNonEqual:Represents an invariant of != between two long scalars. 
IsPointer:IsPointer is an invariant that heuristically determines whether an integer represents a 

pointer (a 32-bit memory address). Since both a 32-bit integer and an address have the same representation, 
sometimes a a pointer can be mistaken for an integer. When this happens, several scalar invariants are 
computed for integer variables. Most of them would not make any sense for pointers. Determining whether 
a 32-bit variable is a pointer can thus spare the computation of many irrelevant invariants.  

LinearBinary:Represents a Linear invariant between two long scalars x and y, of the form ax + by 
+ c = 0. The constants a, b and c are mutually relatively prime, and the constant a is always positive. 

LinearBinaryFloat:Represents a Linear invariant between two double scalars x and y, of the 
form ax + by + c = 0. The constants a, b and c are mutually relatively prime, and the constant a is always 
positive. 

LinearTernary:Represents a Linear invariant over three long scalars x, y, and z, of the form ax + 
by + cz + d = 0. The constants a, b, c, and d are mutually relatively prime, and the constant a is always 
positive. 

LinearTernaryFloat:Represents a Linear invariant over three double scalars x, y, and z, of the 
form ax + by + cz + d = 0. The constants a, b, c, and d are mutually relatively prime, and the constant a is 
always positive. 

LowerBound:Represents the invariant <pre>x &gt;= c</pre>, where c is a constant and x is a long 
scalar. 

LowerBoundFloat:Represents the invariant <pre>x &gt;= c</pre>, where c is a constant and x is a 
double scalar. 

Member:Represents long scalars that are always members of a sequence of long values. Prints as x 
in y[] where x is a long scalar and y[] is a sequence of long. 

MemberFloat:Represents double scalars that are always members of a sequence of double values. 
Prints as x in y[] where x is a double scalar and y[] is a sequence of double. 

MemberString:Represents String scalars that are always members of a sequence of String values. 
Prints as x in y[] where x is a String scalar and y[] is a sequence of String. 

Modulus:Represents the invariant x == r (mod m) where x is a long scalar variable, r is the 
(constant) remainder, and m is the (constant) modulus. 

NoDuplicates:Represents sequences of long that contain no duplicate elements. Prints as x[] 
contains no duplicates. 

NoDuplicatesFloat:Represents sequences of double that contain no duplicate elements. Prints 
as x[] contains no duplicates. 

NonModulus:Represents long scalars that are never equal to r (mod m) where all other numbers in 
the same range (i.e., all the values that x doesn’t take from min(x) to max(x)) are equal to r (mod m). Prints 
as x != r (mod m), where r is the remainder and m is the modulus. 

NonZero:Represents long scalars that are non-zero. Prints as x != 0, or as x != null for pointer 
types. 

NonZeroFloat:Represents double scalars that are non-zero. Prints as x != 0. 
NumericFloat.Divides:Represents the divides without remainder invariant between two double 

scalars. Prints as x % y == 0. 
NumericFloat.Square:Represents the square invariant between two double scalars. Prints as x = 

y**2. 
NumericFloat.ZeroTrack:Represents the zero tracks invariant between two double scalars; that is, 

when x is zero, y is also zero. Prints as x = 0 &rArr; y = 0. 
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NumericInt.BitwiseAndZero:Represents the BitwiseAnd == 0 invariant between two long scalars; 
that is, x and y have no bits in common. Prints as x &amp; y == 0. 

NumericInt.BitwiseComplement:Represents the bitwise complement invariant between two long 
scalars. Prints as x = ~y. 

NumericInt.BitwiseSubset:Represents the bitwise subset invariant between two long scalars; that 
is, the bits of y are a subset of the bits of x. Prints as x = y | x. 

NumericInt.Divides:Represents the divides without remainder invariant between two long scalars. 
Prints as x % y == 0. 

NumericInt.ShiftZero:Represents the ShiftZero invariant between two long scalars; that is, x right-
shifted by y is always zero. Prints as x &gt;&gt; y = 0. 

NumericInt.Square:Represents the square invariant between two long scalars. Prints as x = y**2. 
NumericInt.ZeroTrack:Represents the zero tracks invariant between two long scalars; that is, 

when x is zero, y is also zero. Prints as x = 0 &rArr; y = 0. 
OneOfFloat:Represents double variables that take on only a few distinct values. Prints as either x 

== c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values). 
OneOfFloatSequence:Represents double[] variables that take on only a few distinct values. Prints 

as either x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values). 
OneOfScalar:Represents long scalars that take on only a few distinct values. Prints as either x == 

c (when there is only one value), x one of {c1, c2, c3} (when there are multiple values), or x has only one 
value (when x is a hashcode (pointer) - this is because the numerical value of the hashcode (pointer) is 
uninteresting). 

OneOfSequence:Represents long[] variables that take on only a few distinct values. Prints as 
either x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values). 

OneOfString:Represents String variables that take on only a few distinct values. Prints as either x 
== c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values). 

OneOfStringSequence:Represents String[] variables that take on only a few distinct values. Prints 
as either x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values). 

PairwiseFloatEqual:Represents an invariant between corresponding elements of two sequences of 
double values. The length of the sequences must match for the invariant to hold. A comparison is made 
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[]. 

PairwiseFloatGreaterEqual:Represents an invariant between corresponding elements of two 
sequences of double values. The length of the sequences must match for the invariant to hold. A 
comparison is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. 
Prints as x[] &ge; y[]. 

PairwiseFloatGreaterThan:Represents an invariant between corresponding elements of two 
sequences of double values. The length of the sequences must match for the invariant to hold. A 
comparison is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. 
Prints as x[] &gt; y[]. 

PairwiseFloatLessEqual:Represents an invariant between corresponding elements of two 
sequences of double values. The length of the sequences must match for the invariant to hold. A 
comparison is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. 
Prints as x[] &le; y[]. 

PairwiseFloatLessThan:Represents an invariant between corresponding elements of two sequences 
of double values. The length of the sequences must match for the invariant to hold. A comparison is made 
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] &lt; y[]. 

PairwiseIntEqual:Represents an invariant between corresponding elements of two sequences of 
long values. The length of the sequences must match for the invariant to hold. A comparison is made over 
each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[]. 

PairwiseIntGreaterEqual:Represents an invariant between corresponding elements of two 
sequences of long values. The length of the sequences must match for the invariant to hold. A comparison 
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] 
&ge; y[]. 

PairwiseIntGreaterThan:Represents an invariant between corresponding elements of two 
sequences of long values. The length of the sequences must match for the invariant to hold. A comparison 
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is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] 
&gt; y[]. 

PairwiseIntLessEqual:Represents an invariant between corresponding elements of two sequences 
of long values. The length of the sequences must match for the invariant to hold. A comparison is made 
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] &le; y[]. 

PairwiseIntLessThan:Represents an invariant between corresponding elements of two sequences 
of long values. The length of the sequences must match for the invariant to hold. A comparison is made 
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] &lt; y[]. 

PairwiseLinearBinary:Represents a linear invariant (i.e., y = ax + b) between the corresponding 
elements of two sequences of long values. Each (x[i], y[i]) pair is examined. Thus, x[0] is compared 
to y[0], x[1]to y[1] and so forth. Prints as y[] = a * x[] + b. 

PairwiseLinearBinaryFloat:Represents a linear invariant (i.e., y = ax + b) between the 
corresponding elements of two sequences of double values. Each (x[i], y[i]) pair is examined. Thus, x[0] is 
compared to y[0],x[1] to y[1] and so forth. Prints as y[] = a * x[] + b. 

PairwiseNumericFloat.Divides:Represents the divides without remainder invariant between 
corresponding elements of two sequences of double. Prints as x[] % y[] == 0. 

PairwiseNumericFloat.Square:Represents the square invariant between corresponding elements of 
two sequences of double. Prints as x[] = y[]**2. 

PairwiseNumericFloat.ZeroTrack:Represents the zero tracks invariant between corresponding 
elements of two sequences of double; that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 &rArr; y[] 
= 0. 

PairwiseNumericInt.BitwiseAndZero:Represents the BitwiseAnd == 0 invariant between 
corresponding elements of two sequences of long; that is, x[] and y[] have no bits in common. Prints as x[] 
&amp; y[] == 0. 

PairwiseNumericInt.BitwiseComplement:Represents the bitwise complement invariant between 
corresponding elements of two sequences of long. Prints as x[] = ~y[]. 

PairwiseNumericInt.BitwiseSubset:Represents the bitwise subset invariant between corresponding 
elements of two sequences of long; that is, the bits of y[] are a subset of the bits of x[]. Prints as x[] = y[] | 
x[]. 

PairwiseNumericInt.Divides:Represents the divides without remainder invariant between 
corresponding elements of two sequences of long. Prints as x[] % y[] == 0. 

PairwiseNumericInt.ShiftZero:Represents the ShiftZero invariant between corresponding elements 
of two sequences of long; that is, x[] right-shifted by y[] is always zero. Prints as x[] &gt;&gt; y[] = 0. 

PairwiseNumericInt.Square:Represents the square invariant between corresponding elements of 
two sequences of long. Prints as x[] = y[]**2. 

PairwiseNumericInt.ZeroTrack:Represents the zero tracks invariant between corresponding 
elements of two sequences of long; that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 &rArr; y[] = 
0. 

PairwiseString.SubString:Represents the substring invariant between corresponding elements of 
two sequences of String. Prints as x[] is a substring of y[]. 

PairwiseStringEqual:Represents an invariant between corresponding elements of two sequences of 
String values. The length of the sequences must match for the invariant to hold. A comparison is made over 
each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[]. 

PairwiseStringGreaterEqual:Represents an invariant between corresponding elements of two 
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison 
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] 
&ge; y[]. 

PairwiseStringGreaterThan:Represents an invariant between corresponding elements of two 
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison 
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] 
&gt; y[]. 

PairwiseStringLessEqual:Represents an invariant between corresponding elements of two 
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison 
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] 
&le; y[]. 
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PairwiseStringLessThan:Represents an invariant between corresponding elements of two 
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison 
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] 
&lt; y[]. 

Positive:Represents the invariant x &gt; 0 where x is a long scalar. This exists only as an example 
for the purposes of the manual. It isn’t actually used (it is replaced by the more general invariant 
LowerBound). 

PrintableString:Represents a string that contains only printable ascii characters (values 32 through 
126 plus 9 (tab) 

RangeFloat.EqualMinusOne:Internal invariant representing double scalars that are equal to minus 
one. Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

RangeFloat.EqualOne:Internal invariant representing double scalars that are equal to one. Used for 
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

RangeFloat.EqualZero:Internal invariant representing double scalars that are equal to zero. Used 
for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing. 

RangeFloat.GreaterEqual64:Internal invariant representing double scalars that are greater than or 
equal to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same 
thing 

RangeFloat.GreaterEqualZero:Internal invariant representing double scalars that are greater than 
or equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same 
thing 

RangeInt.BooleanVal:Internal invariant representing longs whose values are always 0 or 1. Used 
for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing. 

RangeInt.Bound0_63:Internal invariant representing longs whose values are between 0 and 63. 
Used for non-instantiating suppressions. Will never print since Bound accomplishes the same thing. 

RangeInt.EqualMinusOne:Internal invariant representing long scalars that are equal to minus one. 
Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

RangeInt.EqualOne:Internal invariant representing long scalars that are equal to one. Used for 
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing 

RangeInt.EqualZero:Internal invariant representing long scalars that are equal to zero. Used for 
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing. 

RangeInt.Even:Invariant representing longs whose values are always even. Used for non-
instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is printed. 

RangeInt.GreaterEqual64:Internal invariant representing long scalars that are greater than or equal 
to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same thing 

RangeInt.GreaterEqualZero:Internal invariant representing long scalars that are greater than or 
equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same 
thing 

RangeInt.PowerOfTwo:Invariant representing longs whose values are always a power of 2 
(exactly one bit is set). Used for non-instantiating suppressions. Since this is not covered by the Bound or 
OneOf invariants it is printed. 

Reverse:Represents two sequences of long where one is in the reverse order of the other. Prints 
as x[] is the reverse of y[]. 

ReverseFloat:Represents two sequences of double where one is in the reverse order of the other. 
Prints as x[] is the reverse of y[]. 

SeqFloatEqual:Represents an invariant between a double scalar and a a sequence of double values. 
Prints as x[] elements y where x is a double sequence and y is a double scalar. 

SeqFloatGreaterEqual:Represents an invariant between a double scalar and a a sequence of double 
values. Prints as x[] elements &ge; y where x is a double sequence and y is a double scalar. 

SeqFloatGreaterThan:Represents an invariant between a double scalar and a a sequence of double 
values. Prints as x[] elements &gt; y where x is a double sequence and y is a double scalar. 

SeqFloatLessEqual:Represents an invariant between a double scalar and a a sequence of double 
values. Prints as x[] elements &le; y where x is a double sequence and y is a double scalar. 

SeqFloatLessThan:Represents an invariant between a double scalar and a a sequence of double 
values. Prints as x[] elements &lt; y where x is a double sequence and y is a double scalar. 
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SeqIndexFloatEqual:Represents an invariant over sequences of double values between the index 
of an element of the sequence and the element itself. Prints as x[i] == i. 

SeqIndexFloatGreaterEqual:Represents an invariant over sequences of double values between the 
index of an element of the sequence and the element itself. Prints as x[i] &ge; i. 

SeqIndexFloatGreaterThan:Represents an invariant over sequences of double values between the 
index of an element of the sequence and the element itself. Prints as x[i] &gt; i. 

SeqIndexFloatLessEqual:Represents an invariant over sequences of double values between the 
index of an element of the sequence and the element itself. Prints as x[i] &le; i. 

SeqIndexFloatLessThan:Represents an invariant over sequences of double values between the 
index of an element of the sequence and the element itself. Prints as x[i] &lt; i. 

SeqIndexFloatNonEqual:Represents an invariant over sequences of double values between the 
index of an element of the sequence and the element itself. Prints as x[i] != i. 

SeqIndexIntEqual:Represents an invariant over sequences of long values between the index of an 
element of the sequence and the element itself. Prints as x[i] == i. 

SeqIndexIntGreaterEqual:Represents an invariant over sequences of long values between the 
index of an element of the sequence and the element itself. Prints as x[i] &ge; i. 

SeqIndexIntGreaterThan:Represents an invariant over sequences of long values between the index 
of an element of the sequence and the element itself. Prints as x[i] &gt; i. 

SeqIndexIntLessEqual:Represents an invariant over sequences of long values between the index of 
an element of the sequence and the element itself. Prints as x[i] &le; i. 

SeqIndexIntLessThan:Represents an invariant over sequences of long values between the index of 
an element of the sequence and the element itself. Prints as x[i] &lt; i. 

SeqIndexIntNonEqual:Represents an invariant over sequences of long values between the index of 
an element of the sequence and the element itself. Prints as x[i] != i. 

SeqIntEqual:Represents an invariant between a long scalar and a a sequence of long values. Prints 
as x[] elements == y where x is a long sequence and y is a long scalar. 

SeqIntGreaterEqual:Represents an invariant between a long scalar and a a sequence of long 
values. Prints as x[] elements &ge; y where x is a long sequence and y is a long scalar. 

SeqIntGreaterThan:Represents an invariant between a long scalar and a a sequence of long values. 
Prints as x[] elements &gt; y where x is a long sequence and y is a long scalar. 

SeqIntLessEqual:Represents an invariant between a long scalar and a a sequence of long values. 
Prints as x[] elements &le; y where x is a long sequence and y is a long scalar. 

SeqIntLessThan:Represents an invariant between a long scalar and a a sequence of long values. 
Prints as x[] elements &lt; y where x is a long sequence and y is a long scalar. 

SeqSeqFloatEqual:Represents invariants between two sequences of double values. If order matters 
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] == y[] 
lexically. 

SeqSeqFloatGreaterEqual:Represents invariants between two sequences of double values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&ge; y[] lexically. 

SeqSeqFloatGreaterThan:Represents invariants between two sequences of double values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&gt; y[] lexically. 

SeqSeqFloatLessEqual:Represents invariants between two sequences of double values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&le; y[] lexically. 

SeqSeqFloatLessThan:Represents invariants between two sequences of double values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&lt; y[] lexically. 

SeqSeqIntEqual:Represents invariants between two sequences of long values. If order matters for 
each variable (which it does by default), then the sequences are compared lexically. Prints as x[] == y[] 
lexically. 

SeqSeqIntGreaterEqual:Represents invariants between two sequences of long values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&ge; y[] lexically. 
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SeqSeqIntGreaterThan:Represents invariants between two sequences of long values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&gt; y[] lexically. 

SeqSeqIntLessEqual:Represents invariants between two sequences of long values. If order matters 
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] &le; 
y[] lexically. 

SeqSeqIntLessThan:Represents invariants between two sequences of long values. If order matters 
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] &lt; 
y[] lexically. 

SeqSeqStringEqual:Represents invariants between two sequences of String values. If order matters 
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] == y[] 
lexically. 

SeqSeqStringGreaterEqual:Represents invariants between two sequences of String values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&ge; y[] lexically. 

SeqSeqStringGreaterThan:Represents invariants between two sequences of String values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&gt; y[] lexically. 

SeqSeqStringLessEqual:Represents invariants between two sequences of String values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&le; y[] lexically. 

SeqSeqStringLessThan:Represents invariants between two sequences of String values. If order 
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] 
&lt; y[] lexically. 

StdString.SubString:Represents the substring invariant between two String scalars. Prints as x is a 
substring of y. 

StringEqual:Represents an invariant of == between two String scalars. 
StringGreaterEqual:Represents an invariant of &ge; between two String scalars. 
StringGreaterThan:Represents an invariant of &gt; between two String scalars. 
StringLessEqual:Represents an invariant of &le; between two String scalars. 
StringLessThan:Represents an invariant of &lt; between two String scalars. 
StringNonEqual:Represents an invariant of != between two String scalars. 
SubSequence:Represents two sequences of long values where one sequence is a subsequence of 

the other. Prints as x[] is a subsequence of y[]. 
SubSequenceFloat:Represents two sequences of double values where one sequence is a 

subsequence of the other. Prints as x[] is a subsequence of y[]. 
SubSet:Represents two sequences of long values where one of the sequences is a subset of the 

other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of y[]or 
as x[] is a superset of y[]. 

SubSetFloat:Represents two sequences of double values where one of the sequences is a subset of 
the other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or 
as x[] is a superset of y[]. 

SuperSequence:Represents two sequences of long values where one sequence is a subsequence of 
the other. Prints as x[] is a subsequence of y[]. 

SuperSequenceFloat:Represents two sequences of double values where one sequence is a 
subsequence of the other. Prints as x[] is a subsequence of y[]. 

SuperSet:Represents two sequences of long values where one of the sequences is a subset of the 
other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of y[]or 
as x[] is a superset of y[]. 

SuperSetFloat:Represents two sequences of double values where one of the sequences is a subset 
of the other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of 
y[] or as x[] is a superset of y[]. 

UpperBound:Represents the invariant <pre>x &lt;= c</pre>, where c is a constant and x is a long 
scalar. 



 62 

UpperBoundFloat:Represents the invariant <pre>x &lt;= c</pre>, where c is a constant and x is a 
double scalar. 
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